
《图像处理中的数学问题》Introduction、The Image Society、What Is a D来自igital Image、Abo镇想清技改架整理ut Partial Differential Equations(PDEs)、Detailed Plan、Mathematical Preliminaries、How to Read This Chapter、The Direct Method in the Calculus of Vgriations、Topo360百科logies on Banach Spaces、C沙取伯否按帝命以见onvexity and Lower Semicontinuity、Rclaxation、Aboutr-Convergence、The Space of Functions of Bounded Variation、Ba临能述建模凯轴至者sic Defi菜充无美可衡nitions 施阿急on Measures、Definition ofBV(Ω)、Properties ofBV(Ω)、Convex Functions of Measures、Viscosity Solutions in PDEs等等。
- 书名 图像处理中的数学问题
- ISBN 7510005388, 9787510005381
- 页数 377页
- 出版社 世界图书出版公司
- 开本 24开
图书信息
出版社: 世界图书出版公司; 第2版 (2009年10月1日)
外文书名: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations
平装: 377页
正文语种: 英语
开本: 24
ISBN: 7510005388, 9787510005381
来自 条形码: 978751000360百科5381
尺寸: 22 x 15 x 据在结风希阳混伟刘打除1.8 cm
重量: 558 g
作者简介
作者:(法国)奥伯特(Gjlles Aubert) (法国)Pierre Kornp杆待活求绿水却掉振初robst
目录
Foreword
Preface to the Second Edition
Preface to the First Edition
Guide t波军跳培右雨板味食房信o the Main Mathematical Concepts and
Their Application
Notation and Symbols
1 Introduction
1.1 The Image Soci构ety
1.2 What Is a Digital Image7
1.3 About Partial Differential Equations(PDE脚益于便伤燃段士s)
1.4 Detailed Plan
2 Mathematical Preliminaries
How to Read Th规高议互农开is Chapter.
2.1 The D来自irect Method 怀安手武掉杆刑连in the Calculus of Vgriations
2.1.1 Topologies on B360百科anach Spaces
2.1.2 Convexity and Lower Semic冲质垂才续呢功依ontinuity
2.1.3 Rclaxat.ion
2.1.4 About r-Convergence
2.2 The Space of Functions of Bounded Variation
2.2.1 Basic Definitions on Measures
2.2.2 Defi了nition ofBV(Ω)
2.2.3 Properties ofBV(Ω)
2.2.4 Convex Functions of Measures
2.3 Viscosity Solutions in PDEs
2.3.1 About the Eikona原层地养至向权l Equation
2.3.降概应关损2 Definition of V英找经亚构老策船浓奏程iscosity S滑足言倒素刻酒走研财践olutions
2.3.3 About the 触Existence
2.3.4 About the Uniqueness
2.4 Elements of Differential Geometry:Curvature
2.4.1 手且敌Parametrized Curves
2.4.2 Curves aS Isolevel of a Functio烟n u
2.4.3 Images aS Surfaces
2.5 0ther Classical Results Used in This Book
2.5.1 Inequalities
2.5.2 Calculus Facts
2.5.3 About Convolution and Smoothing
2.5.4 Uniform Convergence
2.5.5 Dominated Convergence了heorem
2.哪贵列之啊京增5.6 Well-Posed Problems
3 Image Restoration How to Read This Chapter
3.1 Image Degrada布扩斤花经似领tion
3.2 The Energy Meth威od
3.2.1 An Inverse Problem
3.2.2 Regularization of th细离若投说e Problem
3.2.3 Existence and Uniqueness of a Solution for the Minimization Problem
3.2.4 Toward the Numerical Approximation
The Projection Approach
The Half-Quadratic Minimization Approach
3.2.5 Some Invariances and the Role of
3.2.6 Some Remarks on the Nonconvex CaSe
3.3 PDE-BaSed Methods
3.3.1 Smoothing PDEs
The Heat Equation
Nonlinear DiRusion
The Alvarez-Guichard-Lions-Morel
Scale Space Theory
Weickert's Approach
Surface Based Approaches
3.3.2 Smoothing-Enhancing PDEs
The Perona and Malik Model
Regutarization of the Perona and Malik Model:Catte et aL
3.3.3 Enhancing PDEs
The Osher and Rudin Shock Filters
A Case Study:Construction of a Solution by the Method ofCharacteristics
Comments on the Shock-Filter Equation
3.3.4 NeighborbOOd Filters,Nonlocal Means Algorithm,and PDEs
Neighborhood Filters
How to Suppress the Staircase Effect?
Nonlocal Means Filter(NL-Means)
4 The Segmentation Problem
How to Read This Chapter
4.1 Definition and Objectives
4.2 The Mumford and Shah Functional
4.2.1 A Minimization Problem
4.2.2 The Mathematical Framework for the Existence of a Solution
4.2.3 Regularity of the Edge Set
4.2.4 Approximations of the Mumford and Shah Functional
4.2.5 Experimental Results
4.3 Geodesic Active Contours and the Level.Set Method
4.3.1 The Kass-Witkin-Terzopoulos model
4.3.2 The Geodesic Active Contours Model
4.3.3 The Level-Set Method
4.3.4 The Reinitialization Equation
CharaCterization of the Distance Function
Existence and Uniqueness
4.3.5 Experimental Results
4.3.6 About Some Recent Advances
Global Stopping Criterion
Toward More General Shape Representation
5 Other Challenging AppliCations
How to Read This Chapter
5.1 Reinventing Some Image Parts by Inpainting
5.1.1 IntroduCtion
5.1.2 Variational Models
The Masnou and Morel Approach
The Ballester et al.Approach
The Chan and Shen Total Variation Minimization
Approach
5.1.3 PDE-Based Approaches
The Bertalmio et a1.Approach
The Chan and Shen Curvature-Driven Diffusion Approach
5.1.4 Discussion
5.2 Decomposing an Image into Geometry and Texture
5.2.1 Introduction
5.2.2 A Space for Modeling Oscillating Patterns
5.2.3 Meyer'S Model.
5.2.4 An Algorithm to Solve Meyer'S Model
Prior Numerical C:ontribution
The Aujol et a1.Approach
Study of the Asymptotic Case
Back to Meyer's Model
5.2.5 Experimental Results
Denoising Capabilities
Dealing With Texture
5.2.6 About Some Recent Advances
5.3 Sequence Analysis
5.3.1 Introduction
5.3.2 The Optical Flow:An Apparent Motion
The Optical Flow Constraint(OFC)
Solving the Aperture Problem
Overview of a Discontinuity.Preserving
Variational Approach
Alternatives to the OFC
5.3.3 Sequence Segmentation
Introduction
A Vriational Formulation
Mathematical Study of the Time-Sampled Energy
Experiments
5.3.4 Sequence Restoration
Principles of Video Inpainting
Total Variation(tV)Minimization Approach
Motion Compensated(MC)Inpainting
5.4 Image Classification
5.4.1 Introduction
5.4.2 A Level-Set Approach for Image Classification
5.4.3 A Variational Model for Image Classification and Restoration
5.5 Vector-Valued Images
5.5.1 Introduction
5.5.2 An FXtended Nbtion of Grudieut
A Introduction to Finite Digerence Methods
B Experiment Yourself!
References
Index
转载请注明出处累积网 » 图像处理中的数学问题