新闻资讯
看你所看,想你所想

脉冲耦合神经网络及应用

《脉冲耦合神经网络及应用》是2010年6月1日高等教育出版社出版的图书。本书主要对人工智能、模式识别、电子工程等进行剖析。

  • 书名 脉冲耦合神经网络及应用
  • 别名 Applications of Pulse Coupled Neural Networks
  • 出版社 高等教育出版社
  • 出版时间 2010年6月1日
  • 页数 199 页

内容简介

  《脉冲耦合神经网络及应用(国内英文版)》内容简介:Applications of Pulse-Coupled Neural Networ来自ks explores the fields of image processing, including i植架快道文随食稳无族张mage filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields.

  T360百科his book is intend继批去犯千费频字ed for researchers and graduate students in artificial in亲不队胡首telligence, pattern recognition, electronic engineering评销消甚义油斤空奏, and computer science.

目录

  Chapter1 Pulse-CoupledNeural美导免喜检探Networks

  1.1音眼否LinkingFieldModel

  1.班达慢过曲玉复图直粮2PCNN

  1.3ModifiedPCNN

  1.3.1IntersectionCorticalModel

  1.3.2SpikingCorticalModel

  1.3.3Multi-channelPCNN

  Summary

  References

  Chapter2 ImageFiltering

  2.1TraditionalFilters

  2.1.1MeanFilter

  2.1.2Medi解各虽anFilter

  2.1.3MorphologicalFilter

  2.1.4WienerFilter

  2.2ImpulseNoiseFiltering

  2.2.1DescriptionofAlgorithmⅠ

  2.2.2DescriptionofAlgorithmⅡ

  2.2.3ExperimentalResultsandAnalysis

  2.3GaussianNoiseFiltering

  2.3市选黄调损达觉陆仅.1PCNNNIa各利点磁激元好ndTimeMatrix

  2.3.2DescriptionofAlgorithmⅢ

  2.3.3ExperimentalResul置成答压草假史谓弦夜她tsandAnalysis

  Summary

  往旧城References

  Chapter3 ImageSegmentation

  3.1TraditionalMethodsandEvaluationCriteria

  3.1.1ImageSegmentationUsi移福调批离编晶胜难坏放ngArithmeticMea阶与们n

  3.1.2ImageSe每论边松缩动企阶都愿二gmentationUsingEntropyandHistogram

  3.1.3ImageSegmentationUsingMaximumBetween-clusterVariance

  3跟批马蛋财协载沉谁.1.4ObjectiveEvaluationCriteria

  3.2ImageSegmentationUsingPCNNandEntropy

  3.3ImageSegmentationUsingSimplifiedPCNNandGA

  3.3.1SimplifiedPCNNModel

  3.3.2DesignofApplicationSchemeofGA

  3.3.3FlowofAlgorithm

  3.3.4ExperimentalResultsandAnalysis

  Summary

  References

  Chapter4 ImageCoding

  4.1IrregularSegmentedRegionCoding

  4.1.1CodingofContoursUsingChainCode

  4.1.2BasicTheoriesonOrthogonality

  4.1.3OrthonormalizingProcessofBasisFunctions

  4.1.4ISRCCodingandDecodingFramework

  4.2IrregularSegmentedRegionCodingBasedonPCNN

  4.2.1SegmentationMethod

  4.2.2ExperimentalResultsandAnalysis

  Summary

  References

  Chapter5 ImageEnhancement

  5.1ImageEnhancement

  5.1.1ImageEnhancementinSpatialDomain

  5.1.2ImageEnhancementinFrequencyDomain

  5.1.3HistogramEqualization

  5.2PCNNTimeMatrix

  5.2.1HumanVisualCharacteristics

  5.2.2PCNNandHumanVisualCharacteristics

  5.2.3PCNNTimeMatrix

  5.3ModifiedPCNNModel

  5.4ImageEnhancementUsingPCNNTimeMatrix

  5.5ColorImageEnhancementUsingPCNN

  Summary

  References

  Chapter6 ImageFusion

  6.1PCNNandImageFusion

  6.1.IPreliminaryofImageFusion

  6.1.2ApplicationsinImageFusion

  6.2MedicalImageFusion

  6.2.1DescriptionofModel

  6.2.2ImageFusionAlgorithm

  6.2.3ExperimentalResultsandAnalysis

  6.3Multi-focusImageFusion

  6.3.1Dual-channelPCNN

  6.3.2ImageSharpnessMeasure

  6.3.3PrincipleofFusionAlgorithm

  6.3.4ImplementationofMulti-focusImageFusion

  6.3.5ExperimentalResultsandAnalysis

  Summary

  References

  Chapter7 FeatureExtraction

  7.1FeatureExtractionwithPCNN

  7.1.1TimeSeries

  7.1.2EntropySeries

  7.1.3StatisticSeries

  7.1.4OrthogonalTransform

  7.2NoiseImageRecognition

  7.2.1FeatureExtractionUsingPCNN

  7.2.2ExperimentalResultsandAnalysis

  7.3ImageRecognitionUsingBarycenterofHistogramVector

  7.4InvariantTextureRetrieval

  7.4.1TextureFeatureExtractionUsingPCNN

  7.4.2ExperimentalResultsandAnalysis

  7.5IrisRecognitionSystem

  7.5.1IrisRecognition

  7.5.2IrisFeatureExtractionUsingPCNN

  7.5.3ExperimentalResultsandAnalysis

  Summary

  References

  Chapter8 CombinatorialOptimization

  8.1ModifiedPCNNBasedonAuto-wave

  8.1.1Auto-waveNatureofPCNN

  8.1.2Auto-waveNeuralNetwork

  8.1.3TristateCascadingPulseCoupleNeuralNetwork

  8.2TheShortestPathProblem

  8.2.1AlgorithmforShortestPathProblemsBasedonTCPCNN

  8.2.2ExperimentalResultsandAnalysis

  8.3TravelingSalesmanProblem

  8.3.1AlgorithmforOptimalProblemsBasedonAWNN

  8.3.2ExperimentalResultsandAnalysis

  Summary

  References

  Chapter9 FPGAImplementationofPCNNAlgorithm

  9.1FndamentalPrincipleofPCNNHardwareImplementation

  9.2AlteraDE2-70ImplementationofPCNN

  9.2.1PCNNImplementationUsingAlteraDE2-70

  9.2.2ExperimentalResultsandAnalysis

  Summary

  References

  Index

转载请注明出处累积网 » 脉冲耦合神经网络及应用

相关推荐

    声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:fendou3451@163.com