新闻资讯
看你所看,想你所想

计算物理学导论

《计算物理学导论》是2011年6月1日世界首投卫味尔适图书出版公司出版的图书,作者是(美国)庞涛。

  • 书名 计算物理学导论
  • 作者 (美国)庞涛
  • 原作品 an introduction to computational physics(second edition)
  • 出版社 世界图书出版公司
  • 出版时间 2011年6月1日

  《计算物理学导论(第2版)》是第二版,将第一版做了全面的更新和修订,改进后的课程不仅提供了学习计算物理学的基本方法,也全面介绍了计算科学领域的最新进展。书中讲述了许多具体例子,包括现代物理和相关领域的数值方法实践计算。每章末有练习题。《计算物理学导论(第2版)》不仅是一部教程,更是相关计算领域的一本很好的参考书。目次:绪论;函数逼近;数值微积分;基础数值法;常微分方程;矩阵数值法;光谱分析法;偏微分方程;分子动力学模拟;模拟连续系统;蒙特卡罗模拟;遗传算法和程序;数值重正化。

语次示精起京发罪包扬药目录

  preface to first edition

  preface

  acknowledgments

  1 in来自troduction

  1.1 computation and science

  1.批运补2 the emergence of modem com360百科puters

  1.3 computer algorithms and languages

  exercises

  2 approximation of a function

  2.1 interpolation

  2.助事香2 least-squares approximation

  2.3 the milli好饭kan experiment

  2.4 spli日财境ne approx南开亮儿角imation

  2.5 ran沿身校dom-number generators

族把进正练众热  exercises

 天贵丰往却 3 numerical cal爱苏的它肥或钢斤黄culus

  3.1 numerical differentia清微座促费散攻底tion

  3.2 numeri台大米处批排cal integration

  3.3 roots of an equation

  3.4 extremes of a function

  3.5 classical scattering

  exercises

  4 ordinary differential equations

  4.1 initial-value problems

  4.2 the euler and picard methods

  4.3 predictor-corrector methods

  4.4 the runge-kutta method

  4.5 chaotic dynamics of a driven pendulum

  4.6 boundary-value and eigenvalue problems

  4.7 the shooting method

  4.8 linear equations and the sturm-liouville problem

  4.9 the one-dimensional schr6dinger equation

  exer均育控记战增金cises

  5 numerical methods for matrices

  5.1 matrices in physics

  5.2 basic matrix operations

  5.3 linear equation systems

  5.4 zeros and extremes of multivariable functions

  5.5 eigenvalue problems

  5.6 the faddeev-leverrier method

  5.7 complex zeros of a polynomial

  5.8 electronic structures of atoms

  5.9 the lanczos algorithm and the many-body problem

  5.10 random matrices

  exercises

  6 spectral analysis

  6.1 fourier analysis and orthogonal functions

  6.2 discrete fourier transform

  6.3 fast fourier transform

  6.4 power spectrum of a driven pendulum

  6.5 fourier transform in higher dimensions

  6.6 wavelet analysis

  6.7 discrete wavelet transform

  6.8 special functions

  6.9 gaussian quadratures

  exercises

  7 partial differential equations

  7.1 partial differential equations in physics

  7.2 separation of variables

  7.3 discretization of the equation

  7.4 the matrix method for difference equations

  7.5 the relaxation method

  7.6 groundwater dynamics

  7.7 initial-value problems

  7.8 temperature field of a nuclear waste rod

  exercises

  8 molecular dynamics simulations

  8.1 general behavior of a classical system

  8.2 basic methods for many-body systems

  8.3 the verlet algorithm

  8.4 structure of atomic clusters

  8.5 the gear predictor-corrector method

  8.6 constant pressure, temperature, and bond length

  8.7 structure and dynamics of real materials

  8.8 ab initio molecular dynamics

  exercises

  9 modeling continuous systems

  9.1 hydrodynamic equations

  9.2 the basic finite element method

  9.3 the ritz variational method

  9.4 higher-dimensional systems

  9.5 the finite element method for nonlinear equations

  9.6 the particle-in-cell method

  9.7 hydrodynamics and magnetohydrodynamics

  9.8 the lattice boltzmann method

  exercises

  10 monte carlo simulations

  10.1 sampling and integration

  10.2 the metropolis algorithm

  10.3 applications in statistical physics

  10.4 critical slowing down and block algorithms

  10.5 variational quantum monte carlo simulations

  10.6 green's function monte carlo simulations

  10.7 two-dimensional electron gas

  10.8 path-integral monte carlo simulations

  10.9 quantum lattice models

  exercises

  11 genetic algorithm and programming

  11.1 basic elements of a genetic algorithm

  11.2 the thomson problem

  11.3 continuous genetic algorithm

  11.4 other applications

  11.5 genetic programming

  exercises

  12 numerical renormalization

  12.1 the scaling concept

  12.2 renormalization transform

  12.3 critical phenomena: the ising model

  12.4 renormalization with monte carlo simulation

  12.5 crossover: the kondo problem

  12.6 quantum lattice renormalization

  12.7 density matrix renormalization

  exercises

  references

  index

作者简介

  作者:(美国)庞涛(TaoPang)

转载请注明出处累积网 » 计算物理学导论

相关推荐

    声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:fendou3451@163.com