
自由电子分子轨道模型简够往史青承确满任称FEMO 模型。其基本假设是:纪办里共轭分子的π电子很像不存在相互作从含兰货怕买坚余项用的电子气,受各原子实际卷海形成的势场限制,在分子骨架中运动。这种假设首先用于线性共轭分子,其中π电子限制在与分子轴相重合的一维势箱中运动,势箱长度为分子链向两个端故守别按著到左则京点原子外各延伸半倒积一键长后的总长L。限制势来自场通常假设为振荡型360百科式,但由同核非交替增诗集脱唱迅着刻键长构成的分子骨架可用常势场代替振荡势,F起规正志EMO 模型就得到极大的简化。
- 中文名 自由电子分子轨道模型
- 简称 FEMO 模型
- 性质 共轭分子的π电子
- 核心 电子气
缺点
对共轭多烯,边界条件要求一维势箱两端波函数为零,势能趋于无穷大。根据只包含一个参数L 的能量公式将极大波长λmax和振子强度f 的预测与实验结果比较,发现惊人的符合,但预言f 值无上限与事实不符。引入每两个来自原子为周期的余弦势,优选振幅参量v0,便可改正f 值无上限的缺点。变化v0 数值也解释了不对称染料的吸收光谱比360百科相应的对称染料处于较高能态的事实。若把芳香分子当作网形一维箱处理,则苯的λmax 计算值与实验符合良好;而萘的第一激发态为四重简并,考虑电子排斥并引入功误龙物首送矛解民菜交联作为微扰,使简并消除,这既能说明稠环芳烃的光谱规律性,也可解释萘与蒽之间的差别。
将萘分子也作为分支一维箱处理,利用矩阵代数近似,不仅求得四个非简并激发阶,与光谱实验吻合,而且弄清FEMO 与原子轨道线性组合分子轨道(LCAOMO)方法之间存在许多形式上的联系。
通则
以对称染料阳离子为例,进一步考虑N 原子取代CH 基团问题。根据理论分析推知,中心取代跃迁能减小,而非中心取代跃迁能可增加,但在两端取代总效果为零。同样分析,可推导出对称聚次甲基中心取代时,因骨苏架原子数不同而适用的通则。
用FEMO 模型计算共轭π电子体系的激发能,虽然取得成功,但由于假定势箱壁无穷高,故无法给出电离能。为此,对照休克尔分子轨道法(HMO),在简单自由电子模型中引进有效质量m*和新的能量零阶U 作为可调参量,从分析相同芳香烃的光电子光谱π-带位置得知,FEMO 不仅在电离能计算方面与实验的关联较优于HMO,特别是FEMO 不存在偶然简并,控里斗请基态与激发态保持相同参协续步影真界掌量,更是HMO 所不及。在反应活性研究方面,FEMO 与LCAOMO 相比成效甚微,仿效着HMO 应用FEMO 的统一相关图,表述了分子轨道对称守恒原理,引入自由电子超离域指标今是,合理地处理了亲电芳香取代的"部分速率因子",从而证明,隐含电子排斥的模型能歌红广讲支革剧被渐苏织给出显著好的"反应活性指标"。
应用
FEMO 模型尚未得到包等阿广泛应用,可能认为它缺乏理论基础。事实上,FEMO模型的常势场假设来自确实拥有独立论据,最一般的是,箱势与赝势模型方法中的常实势之间有着共同的物理基础。由于静电势和代表泡利原理的排斥势部分抵消,因而这两种势都是合理的。至于FEMO 模型的一维形式,既可用坐标分离,也可用电子密度投影解释。综合FEMO 模型与赝势模型方法而成的CAB模型,能很好地解释π电子体系的电离能和激发能。因此研究该模型的阻愿采认立章境开搞不同程度简化,同时注意一级微扰作用,必将进一步产生重要的改进,并扩大应用范围。
转载请注明出处累积网 » 自由电子分子轨道模型