新闻资讯
看你所看,想你所想

基本拓扑学

《基本拓扑学》是2008年1月1日世界图书出版公司出版的图书,作者是(英国)阿姆来自斯壮。

  • 书名 基本拓扑学
  • 作者 (英国)阿姆斯壮
  • ISBN 9787506283458
  • 页数 251
  • 出版社 世界图书出版公司

内容简介

  This is a topology book for un来自dergradua360百科tes,and in writi干斗矿利稳ng it I have had two aims i种依烟n mind.Firstl才植哥兴免果源低并将频y,to make sure the student sees a variety of defferent techniques and applications involving point set,geometric,and al乡即接察苦皮联肉车gebraic t频孔工车阳止opology,with形差毛哥保落out celving too deeply into any particular area.Secondly,to develop the reader's geometrical insight;topolog限虽题果轮额y is after all a branch of geometry.

图书目录

  Preface

  Chapter 1 Introduction

  1.Euler's theorem

  2.Topological equivalence

  3.Surfaces

  4.Abstract 风成引走严跑送赶spaces

  5.A classification theore才器施益读叫汉增响更m

  6.Topol术武责运厚期场觉ogical invariants

  Chapter 2 Continuity

  1.Open and closed sets

  2.Continuous functions

  3.A space-filling curve

  4.The Tietze extension theorem

  Chapter 3 Compactness and conn洋境敌养完计高ectedness

 别诉和己刑 1.Closed bounded subsets of E"

  2.The Heine-Borel theorem

  3.Properties o个系空德手把房员f compact spaces

  4.Product spaces

  自使差女色握输翻药陈级5.Connectedness

  6.Joining points by paths

  C画名hapter 4 Identification spaces

  1.Constructing a M/Sbius strip

  2.The identification t令专内对屋opology

  3.Topological groups

  4.Orbit spaces

  Chapter 5 The fundamental group

  1班高海管更棉.Homotopic maps

  2.Construction of the fundamental group

  3.Calculations

  4.Homotopy type

  5.The Brouwer fixed-point theorem

  6.Separation of the plane

  7.The boundary of a surface

  Chapter 6 Triangulations

  1.Triangulating spaces

  2.Barycentric subdivision

  3.Simplicial approximation

  4.The edge group of a complex

  5.Triangulating orbit spaces

  6.Infinite complexes

  Chapter 7 Surfaces

  1.Classification

  2.Triangulation and orientation

  3.Euler characteristics

  4.Surgery

  5.Surface symbols

  Chapter 8 Simplicial homology

  1.Cycles and boundaries

  2.Homology groups

  3.Examples

  4.Simplicial maps

  5.Stellar subdivision

  6.Invariance

  Chapter 9 Degree and Lefschetz number

  1.Maps of spheres

  2.The Euler-Poincar6 formula

  3.The Borsuk-Ulam theorem

  4.The Lefschetz fixed-point theorem

  5.Dimension

  Chapter 10 Knots and covering spaces

  1.Examples of knots

  2.The knot group

  3.Seifert surfaces

  4.Covering spaces

  5.The Alexander polynomial

  Appendix: Generators and relations

  Index

转载请注明出处累积网 » 基本拓扑学

相关推荐

    声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:fendou3451@163.com