
《基本拓扑学》是2008年1月1日世界图书出版公司出版的图书,作者是(英国)阿姆来自斯壮。
- 书名 基本拓扑学
- 作者 (英国)阿姆斯壮
- ISBN 9787506283458
- 页数 251
- 出版社 世界图书出版公司
内容简介
This is a topology book for un来自dergradua360百科tes,and in writi干斗矿利稳ng it I have had two aims i种依烟n mind.Firstl才植哥兴免果源低并将频y,to make sure the student sees a variety of defferent techniques and applications involving point set,geometric,and al乡即接察苦皮联肉车gebraic t频孔工车阳止opology,with形差毛哥保落out celving too deeply into any particular area.Secondly,to develop the reader's geometrical insight;topolog限虽题果轮额y is after all a branch of geometry.
图书目录
Preface
Chapter 1 Introduction
1.Euler's theorem
2.Topological equivalence
3.Surfaces
4.Abstract 风成引走严跑送赶spaces
5.A classification theore才器施益读叫汉增响更m
6.Topol术武责运厚期场觉ogical invariants
Chapter 2 Continuity
1.Open and closed sets
2.Continuous functions
3.A space-filling curve
4.The Tietze extension theorem
Chapter 3 Compactness and conn洋境敌养完计高ectedness
别诉和己刑 1.Closed bounded subsets of E"
2.The Heine-Borel theorem
3.Properties o个系空德手把房员f compact spaces
4.Product spaces
自使差女色握输翻药陈级5.Connectedness
6.Joining points by paths
C画名hapter 4 Identification spaces
1.Constructing a M/Sbius strip
2.The identification t令专内对屋opology
3.Topological groups
4.Orbit spaces
Chapter 5 The fundamental group
1班高海管更棉.Homotopic maps
2.Construction of the fundamental group
3.C空alculations
4.Homotopy type
5.The Brouwer fixed-point theorem
6.Separation of the plane
7.The boundary of a surface
Chapter 6 Triangulations
1.Triangulating spaces
2.Barycentric subdivision
3.Simplicial approximation
4.The edge group of a complex
5.Triangulating orbit spaces
6.Infinite complexes
Chapter 7 Surfaces
1.Classification
2.Triangulation and orientation
3.Euler characteristics
4.Surgery
5.Surface symbols
Chapter 8 Simplicial homology
1.Cycles and boundaries
2.Homology groups
3.Examples
4.Simplicial maps
5.Stellar subdivision
6.Invariance
Chapter 9 Degree and Lefschetz number
1.Maps of spheres
2.The Euler-Poincar6 formula
3.The Borsuk-Ulam theorem
4.The Lefschetz fixed-point theorem
5.Dimension
Chapter 10 Knots and covering spaces
1.Examples of knots
2.The knot group
3.Seifert surfaces
4.Covering spaces
5.The Alexander polynomial
Appendix: Generators and relations
Index