新闻资讯
看你所看,想你所想

计算物理简明教程

来自计算物理简明教程》是2010年8月1日由上海交通大学出版社出版编著360百科的实体书。《计算物理简明教程》介绍了"计算物理"学科中的几种基本常用方法,具体内容包括,误差分析、有读赵身之规秋及体限差分和内插法、数值积分方法、矩阵算法、常微分方程差分解法、偏微斤等素府外除介分方程解法、蒙特卡罗模拟方法等。《计算物理简明教程》可供物理专业的本科生集证蛋何作为"计算物理"课改害还诉需县程教材使用,也可供从事数值计算的相关屋广风鸡零烧染专业的研究生参考旧危害家穿论备掉须

  • 书名 计算物理简明教程
  • 出版社 上海交通大学出版社
  • 出版时间 2010年8月1日
  • 页数 259 页
  • 开本 16 开

内容简介

  《计算物理简明村审扬远呼富鱼列理教程》是2010年8月1日由上海交通大学出版社出版编著的实破略菜初体书。《计算物理简明教程》介绍了"计算物顾象远今果理"学科中的几种基本常用方了值第无迫法,具体内容包括,误差分析、有限差分和内插法、数值积分方法、矩阵算法、常微分方程差分解法、偏微分方程解法、蒙特卡罗模拟方法等。《计算物理简明教程》可供物理专业的本科生作为"计算物理"课程教材使用,也可供从事数值计算的相关专业的研究生参考。

目录

  Approximations, Errors and the Taylor Series

  革师没观穿孩空信1. 1Approximations and Errors

  l. 1. 1Approximations

  1.1.2Round-off Errors

  1. 1.3Principles to Hold During the Numerical Calculations

  1.2Truncation Errors and the Taylor S来自eries

  1.2. 1练况套Truncation Errors

  1.2.2T360百科he Taylor Series

  1.2. 3Some Techniques in Numerical Computation

  陈目啊气好1.3Control of Total Numerical Error

  1.3. 1Truncation Error

  1.3.2Total Numer视特配没散让真方右ical Error

  1.3.3Control of Numeri于稳cal Errors

  1.4Problems for Chapter I

  1变乐海又财次切极.5Computer Work for Chapter 1

  2Interpolation and Finite Differences;

  2. 1Finite Difference

  2. 2Newton Interpolation'

  2. 2. 1Basis Functions

  2. 2. 2Newton Interpolation,-.

  2. 非训2. 3Newton's Divided-difference 孙技仍研右历计居Interpolat乡爱困压得言压告ing Polynomial ..

  2. 2. 4Errors of Newton Interpolation

  2. 3Interpolation Formulae

  2. 3. 1NGF Interpolation

  2. 3. 2NGB I领地出快明并敌煤只黑倒ntei'polation

  2. 3. 用必卫余确特3ST Interpolation

  2. 4Difference Quotients

  2.4. 1DNGF Formulae

  2.4. 2DNGB Formulae

  2. 4. 3DST Formulae

  2. 5Pro血今士跟失都导压blems for Chapter 2'

  2. 6Computer Work for Chapter 2

  3Numerical Integration

  3. 1Numerical Integration Methods

  3. 2Newton-Cotes Quadrature Rules

  3. 2. 1The Trapezoid Rule

  3.2. 2Simpson's Rule

  3. 2. 3Error Estimation

  3. 3Composite and Adaptive Quadrature

  3. 3. 1Composite Quadrature Rules:

  3. 3. 2Automatic and Adaptive Quadrature

  3. 4Numerical Integration of Multi-dimensional Integrals

  3. 5Problems for Chapter 3

  3. 6Computer Work for Chapter 3

  4Matrix Algebra

  4. 1Types of Matrices

  4. 2Gauss Elimination and Back Substitution

  4. 2. 1The Elimination of Unknowns

  4. 2. 2The Algorithm of Gauss Elimination and Back Substitution

  4. 2. 3Techniques for Improving Solutions

  4. 3LU Decomposition and Matrix Inversion

  4. 3. 1Overview of LU Decomposition

  4. 3. 2LU Decomposition Algorithm

  4. 3. 3Procedure from Gauss Elimination

  4. 3. 4The Matrix Inverse and Error Analysis

  4. 4Tridiagonal Matrices and Recursion Method

  4. 4. 1Tri-diagonal Systems

  4. 4. 2Recursion Method

  4. 5Iterative Methods

  4. 6Jacobi Method

  4. 6. 1The Algorithm

  4. 6. 2The Convergency

  4.7Gauss-Seidel Method (GS)

  4. 7. 1The Algorithm

  4. 7. 2The Convergency

  4. 8Successive Over-Relaxation Method(SOR)

  4.9Conjugate Gradient Method(CG)

  4. 9. 1The Gradient

  4. 9.2Steepest Descent Method

  4. 9. 3CG Method

  4. 10 Problems for Chapter 4

  4. 11 Computer Work for Chapter 4

  Ordinary Differential Equations

  5.1Types of Differential Equations

  5. 2Euler Method

  5.2. IError Analysis

  5.2. 2 Stability

  5.2. 3Application to Vector Equations

  5.3The Leapfrog Methods

  5.3. 1Stability Analysis

  5.3.2Generalization to Multi-step Scheme

  5. 4Implicit Methods

  5.4. 1The Most Fundamental Scheme

  5.4. 2Implicit Scheme of Second OrderImproved Euler Method

  5.5The Runge-Kutta Method

  5. 5. 1The Basic Idea of Runge-Kutta Method

  5. 5.2Stability Analysis

  5.5. 3Adaptive RK Method

  5.6Predictor Correetor(PC) Method

  5. 7Boundary Value Problems and Initial Value Problems of Second

  Order

  5.7. 1Shooting Method-

  5.7.2Numerov's Method

  5.8Problems for Chapter 5

  5.9Computer Work for Chapter 5

  6Partial Differential Equations

  6. 1Types of Equations

  6.2Elliptic Equations

  6. 2. 1Two or More Dimensions

  6. 2.2ADI (alternating direction implicit) Method

  6. 3Hyperbolic Equations

  6.3. 1The FTCS Scheme

  6. 3.2The Lax Scheme

  6. 3.3Leapfrog Scheme

  6. 4Parabolic Equations

  6. 4. 1A Simple Method u FTCS Scheme

  6. 4. 2Implicit Scheme of First Order

  6. 4, 3Crank-Nieholson (CN) Scheme

  6. 5Five-point Stencil for 2D Poisson Equation in Electromagnetic

  Field

  6. 6Problems for Chapter 6

  6. 7Computer Work for Chapter 6

  7Monte Carlo Methods and Simulation

  7. 1Probability

  7. 1.1Chance and Probability

  7. 1.2A One-dimensional Random Walk

  7. 1.3Probability Distribution

  7. 1.4Random Variables

  7.2Random Number Generators

  7. 2. 1Linear Gongruential Generators.,

  7. 2. 2Shift Register Generators

  7. 3Non-uniform Probability Distribution

  7.3. 1Inverse Transform Method

  7.3. 2Generalized Transformation Method -- Box-Mtiller

  Technique

  7. 4Monte Carlo Integration

  7.4. 1Splash Method (Hit or Miss Method)

  7.4. 2Sample Mean Method

  7. 4. 3Two Theorems in Probability Theory

  7.4. 4MC Error Analysis

  7. 4. 5Importance Sampling Technique

  7. 5Stochastic Dynamics

  7.5.1Random Sequences

  7. 5.2Stochastic Dynamics

  7. 6Monte Carlo Simulation and Ising Model

  7. 6. 1Simulation Methods

  7. 6. 2Random Walk Methods

  7. 6.3 The Ising Model

  7.6. 4 The Metropolis Algorithm

  7. 7Problems for Chapter 7

  7. 8Computer Work for Chapter 7

  Bibliography

转载请注明出处累积网 » 计算物理简明教程

相关推荐

    声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:fendou3451@163.com